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A mechanical system consisting of two interacting subsystems is considered. When the interaction is removed one subsystem is 
Hamiltonian and the other is a dissipative linear oscillatory system. Integral manifolds are used to study the motions that are 
established after the high-frequency normal oscillations of the dissipative subsystem are damped. Evolution equations are 
constructed to describe the behavionr of the Hamiltonian subsystem over long time intervals. 

1. S Y S T E M  D E S C R I P T I O N .  B A S I C  A S S U M P T I O N S  

Consider a mechanical system consisting of two interacting subsystems SH and So. 
When the intera,~on is removed, subsystem Sx becomes a Hamiltonian system with n degrees of 

freedom and subsystem So becomes a dissipative linear oscillatory system with rn degrees of freedom. 
The characteristic period of oscillation in subsystem So and the characteristic damping time of these 
oscillations are comparable in magnitude and much smaller than the characteristic time of motions in 
subsystem SH. 

Below we call SH the damped system and So the damper. 
The equations of motion of the system SH + So can be written in Routhian form [1] 

P" =-Vt~R, Q '=  VrR. (VvR)'- VqR =-VvO (1.1) 

Here P = ( P I , . . . ,  In), Q = (Q1, • • • ,  Qn) are canonical variables used to describe the motions in 
SH and q = ( q l , . . . ,  q,) is the generalized coordinate vector of the damper with v = q. Dots denote 
derivatives with respect to time t. 

The Routhian function R in (1.1) is a combination of the Hamiltonian H subsystem SH, the Lagran~an 
L of subsystem So, and a function K characterizing the interaction of the subsystems: R = H + K -  L. 

Given these assuraptions the Lagrangian L and the dissipative function • of the damper can be written 
in the form 

L(v, q, ~) = I/2[(v, My) - E-2(q, Aq)], O(v, E) = I/2C-I(v, Dr) (1.2) 

Here M, A and D are positive-definite symmetric matrices with constant coefficients, and To and TH 
are characteristic t~ales of processes in So and SH. 

We take 

K(P, Q, v, q) = (u, q) + I/2(v, I'q) + K2(P, Q, q) 

to be the interaction function with u = (Ul(P,  Q ) , . . . ,  um(P , Q)) = VqK(P, Q, 0, O), F is an anti- 
symmetric matrix whose elements are functions of P, Q, and the function K2(P, Q, q) = O(q2), 
q = I q I = (q2 + . . .  q2,n)V2" 

With this choice of K the system SH + So is a finite-dimensional model of systems encountered in 
studies of the motic~n of a deformable solid about its centre of mass (see below, Section 6.) 

We take the fun¢:tion H to be bounded in R n x R n together with derivatives of up to third order 
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inclusive. The function K(P, Q, v, q) is assumed to be bounded together with its first and second 
derivatives i n /~  x / ~  x ~ ' x  ~ (where ~ i s  a sphere of radius A in R m with centre at O). 

2. STEADY MOTION 

When studying the dynamics of Sic + St) over time intervals comparable to or substantially greater 
than Tn it is desirable to consider the motion of the damper to be forced and to describe it by relations 
of the form 

v = v ( P , Q , e ) ,  q = q . ( p , Q , e )  (2.1) 

Substituting (2.1) into the equations for P, Gin (1.1) we obtain a closed system of equations describing 
the behaviour of subsystem Sn after the normal oscillations of the damper have decayed away. 

Varions modifications of these equations for the steady motions of specific systems were constructed 
in [2-4]. There have been attempts [5, 6] to give a vigorous justification for using such equations to 
describe the regular components of the motion by boundary function theory methods [7]. 

Relations (2.1) define a hypersurface x, dim X = 2m in the phase space of system Sn + So. If this 
hypersurface is invariant with respect to the phase flow of the system, it is called an integral manifold 
(IM) [8, 9]. 

Theorem. For sufficiently small values of the parameter e system (1.1) possesses an IM Y. described 
by relations of the form (2.1). On the manifold Z system (1.1) is equivalent to the system 

P" = -VqH - V Q K ( P ,  Q, v(v,  q, e), q.(v, q, ~)) 

Q" = -VpH + V p K ( P ,  Q, v.(v, q, ~), q.(v, q, ~)) 

(2.2) 

The functions v.(v, q, e), q.(v, q, e) satisfy the inequalities 

Iv.(v, q, e)l ~< e2Ci, Iq.(v, q, z)l ~< e2Ct, C I = const > 0 

Proof. In Eqs (1.1) we replace the variables v, q by the variables v, ~ using the substitutions 

t~=e- lv ,  ~=1~-2q +A-tu 

In the new variables the motion is described by the singularly perturbed system of equations 

Here 

P" = -VQH - VqK(P, Q, ev, ex(~ - A-tu)); 

Q' = VvH + VvK(P, Q, e~, e2(~ _ A-tu)) 

: 11 - 'Ai0 
X,, = F(P, Q)v + O(e2), X~ = A - I { u ,  H} + O(E 2) 

(2.3) 

{u, H I  = ( lut ,  H I  ..... I u,,,. H I )  

{ • ,.  } are Poisson brackets for the subsystem SH, and E is the unit ( m x  m) matrix. 
System (2.3) satisfies the conditions of the existence theorem for IM in singularly perturbed systems 

of general form [8, pp. 265-271]. The proof of this theorem consists of constructing a special contraction 
mapping on the set of functions specifying hypersurfaces in phase space. For system (2.3) the construction 
of the mapping is much simpler. We intend to use this mapping to derive approximate equations for 
the steady motion, and hence describe it in detail. 
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Let ~(s, S) be the set of pairs of vector functions of dimension m (V(P, Q), Z(P, Q)) satisfying the 
conditions 

IV(l ~, Q') - V(P, Q)I ~ s0P' - Pl + IQ' - QI) 
IZ(P', Q') - Z(P, Q)I <~ sOP' - PI + IQ' - QI) 
~ u ~  max{IV(P,Q)l, IZ(P,Q)I} ~ S 

We consider mapping ~c: &(s, S) ~ ~(s, S) under which the pair (V, Z) turns into the pair (V, Z), where 

[ o 11 )~ (l~x,p,Q, el V, Z) I II! ~.(p,Q)I~(P'Q) =l~_.I exp(--*~) ~.v(t~x,p,Q,elV, Z ) dx 

X{(t,P,Q, elV, Z)= X{(P,Q,V(P,O),Z(P,(~),E), ~= !,,~ 

The functions P = P(t, P, Q, e I V, Z), (~ = O(t, P, Q, e I V, z )  are a solution of the Cauchy problem 

P(O, P, Q, ~1 V, Z) = P, (~(0, P, Q,el v, Z) = Q 

for the closed system of equations 

P" = -VQH - VQK(P, Q, cV, e2(Z - A - l u ) )  

Q" = -VrH + Vt, K(P, Q, eV, e2(Z - k-lu)) 

It can be shown that 

With the condition e < Co(S, S), for (Va, Z,,), (Vb, Zb) E d~($, S) we have the relations 

sup max{l~l, IZ;I}<~eC 2 (;=a,b) 
R"xR" " 

sup max{llT',-I~bl 12, _~hl}~< (2.4) 
R" x A" 

~<eC s sup max{IV,-Vbl , IZ -Zbl } 
~ x ~ '  

(where C2 and Cs txe positive constants). 
Cs }, a pair (V., Z.) E @($, 8) exists such Because @e is a contraction mapping when e < min{e0, -1 

that (V., Z.) = @d(v., z.)]. The relations 

u = V(P,  Q, e), ~ = Z.(P, Q, e) (2.5) 

define an IM of system (2.3). The functions Vo and Z. depend on E through its being the parameter of 

The presence in system (2.3) of the IM (2.5) means the existence of the IM (2.1) for system (1.1). 
The theorem is proved. 

The manifold Y. is an attractor. In some neighbourhood of g the change in the ratio of the actual 
and initial distances to the manifold Y. along an arbitrary solution of system (1.1) has an upper bound 
set by the function Csexp(-Cd/O, where (74 and (75 are positive constants [8, pp. 273-276]. Investigations 
of the asymptotic behaviour of the motion of subsystem S~t can therefore be restricted to analysing 
solutions lying on the manifold E. 
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3. P R O P E R T I E S  OF THE LOCAL D E S C R I P T I O N  OF STEADY MOTION 

In the phase space of the damped system we select a close bounded domain ~.  A local IM Y_~ will 
be a hypersurface in ~ x g ~ x  g~'described by relations of the form (2.1) and satisfying the condition 
that any phase trajectory of system (1.1) starting on ~ remains in Y_~ as long as it does not leave ~ x 

Suppose that for systems SO ) + S(o 1) and S~)+ S(o2)the Routhian functions R (1) and R (2) are identical 
in ~ x g~ 'x  g~'. Then E(k) = E(k) f'l ~ x ~1~' x g~' (k = 1, 2) will be a local IM of both systems 
simultaneously. 

We shall show that in the general case gO) ~ E~). Consider a domain ~ and systems S~ ) + S 0), 
S~)+ S~ ) such that any phase trajectory of Eqs (1.1) with functions R = R O) - R (2) belonging to 
Z(~)or Y.(~)leaves ~ x g~rx ~ a s  t ~ *,,. In the domain 

Z,(,)_ Z,(2 ) = -. exp(-~'z) )~,)_ j~2) dx (3.1) 

Here V (k), Z.  (k) are functions defining E. (k) for system S~ )+ S~ ), and T~(P, Q) ~< 0 is the time of 
intersection of the solution 

p(t,P,Q, elVt, k),Zt, k)), {~(t,P,Q, elV,~k),Z~ k)) 

with the boundary of the domain ~ (k = 1, 2). 
The value of the integral in (3.1) is governed by the behaviour of the functions R O) and R (2) outside 
x g ~ x  g ~  and is in general non-zero. 
We will estimate the distance between the hypersurfaces Z~) and ~ ) .  We take a domain ~ lying in 
together with some neighbourhood, and put 

T~(~) = max . Tn(P,Q) 
(P,Q)e8~ 

Using the boundedness of the functions x(k! X(~)(k = 1, 2) and relations (3.1), we find 

s~p max{I V, tt) - V.t2)l, IZ~ I) - Z.~2)I} ~< ¢C 6 exp(-~T~(~) / I~) (3.2) 

Here ~: is the value of the real part of that root of the characteristic equation det I MP 2 + Dp + A I = 0 
which is nearest to the imaginary axis, and C6 is a positive constant. 

It follows from (3.2) that the distance between E~and E~ ) in ~ is of magnitude O(e 2 exp(-rT~ (~)/e)). 
The non-uniqueness of the local IM should be-taken ifito account when analysing the dynamics of 

specific systems Sit + So in situations when the application of the theorem proved in Section 2 is only 
possible by altering or redefining the functions H(P, Q), K(P, Q, v, q) in some domain of the system 
phase space. 

4. A P P R O X I M A T E  EQUATIONS FOR STEADY MOTION OF 
THE SYSTEM 

With an error of O(e k+l) the IM E. of system (2.3) is described by relations 10 = Vk, ~ = Zk, where 
(Vk, Zk) = ~,~[(0, 0)]. Indeed, we have the following chain of inequalities 

sup max{IV~-V,I, IZk-Z,I}<~EC~supmaxllV k i -V.I ,  IZk_ I -Z,I}<~... 
, ~ x ~  " - 

. . .~ (EC~) (k-I) sup max{iV l - V.I, IZ I - Z.I} ~< 
• ~x~ 

_ i-, f,k+l ~<(~C~) k sup max{IV.I, IZ.I}~<gk+lC7, C7-'~2"-'3 
• ~'x~ 

When k = 1 we obtain 
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d -  
o 

+ ~ - I  i exp(-Ex) ..~ X,(gx,  P,Q,¢IO,0) Idx= 

-** ~ X,(ez, P,Q,I~,0,0~ I 

0 I II ° A-mlu, H} +O(e2), ---~ = _A_iM _A-~D 

Thus, with an en'or of O(e2), the IM Z, is given by the relations 

t~ = --~A-I {u, H}, ~ = EA-IDA-IIu, H} 

From this it follows that for steady motions 

V = -E2A -I {U, H} 

with an error of O(E3), and 
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(4.1) 

q = --~2A-tu + E3A-IDA-I{ u, H} (4.2) 

with an error of O(e4). 
Substituting expressions (4.1), (4.2) into (2.2) we obtain a system of equations for the steady motion 

P" = -VQ~,  - E3UQA-IDA-1 {u. H I ,  Q" = Vp~°/~ + £3UpA-IDA-I {u, HI  (4.3) 

where 

' o e ,  ' 

U v = .. . . . . . . . . . . . . .  U 0 = 3,,, . . . .  

,~.(P, Q, ~) = H(P, Q) + £2H2(P , Q), H2(P , Q) = -r/2(u, A-lu) 

The nearly-Hamitltonian system of equations (4.3) describes the influence of the interaction with the 
damper on the dynamics of subsystem Su to an accuracy of O(e) over a time interval e -3. 

5. EVOLUTION OF STEADY MOTIONS IN AN INTEGRABLE 
SUBSYSTEM Sn 

Suppose that I = (11, . . . .  In), ~ = ( 9 1 , . . . ,  q~n) are "action-angle" variables in Sn. In I, ~ variables 
the equations of ste, ady motion have the form 

I'  ---- -E2V~H2 - E3U~oA - IDA -turm, (5.1) 

~0' = to(I) + ¢2VtH 2 + ¢3UtA-I DA-tUrto 

Here to(I) = Vpr-/(l:) is the frequency vector of the subsystem SH. 
The variables of (5.1) separate: the I variables are slow (l = O(e 2) and the q~ variables are fast 

(~ = 0 ( 1 ) ) .  
We shall study the behaviour of the slow variables using an averaging method [10]. 
We restrict ourselves to the case when the Fourier series of the function u(I, q~)with respect to 

contains a finite number of terms 
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u(I,~o)= Y. ut ( l )e  i(k''°), (k,{o)=k;qh+...+k,,q~ ~ 
k~Z".lkl~N 

In system (5.1) we perform two consecutive averaging changes of variables 

' 2 

The first change of variables removes the second-order terms in e in the slow variable equations and 
is a canonical transformation with generating function 

S ( i ,  ~0) = ( i ,  q~) - ie 2 H2k (I) ei(k,~) 
k~Z'XO, lkl~2Jv (k,~0) 

where 

H 2 k ( 1 )  = - I/2 ~ (Uk , ( I ) ,  A - l U k _ k , ( l ) )  
k'¢Z n. Ik'l~N. Ik-k' l~N 

The second change of variables removes terms of the third order in e depending on q~ from the slow 
variable equations. 

In asymptotically small neighbourhoods of the resonance surfaces (a~(l), k) = 0 (k e Z", I k l ~< 2N) 
these changes of variables become meaningless. The properties of the solutions of system (5.1) at 
resonance must be investigated by the methods described in [11, Chapter III]. 

Far from the resonance surfaces the behaviour of the slow variables with accuracy O(e) in the time 
interval e -3 are described by evolution equations (using the original notation for the averaged variables) 

I" = -Vt,Oeft{to(l), I) ( 5 . 2 )  

where 

~eff(Oi ,  I) = E3/2((I), D~n¢O) 

Den. = ((U,pA-IDA-IUr)) = Y. (u k, A-IDA-lu k )krk 
kcZ". Ikl~N 

2rt 2x 

I . . .  I ((')) = (2n) ' - - - -7  0 0 

The quadratic form Oeff(to, I) in (5.2) is an analogue of the function O(v, e) in (1.1) and describes 
the dissipation of energy in steady motion 

((O(v.(l, ~o, e), e))) = Oeff(to(l), I) + O(E 4) 

6. THE Sn + So SYSTEM AS A MODEL OF A D E F O R M A B L E  SOLID 
P E R F O R M I N G  T R A N S L A T I O N A L - R O T A T I O N A L  M O T I O N  

In many investigations, for example, when studying the dynamics of large space structures or the tidal 
evolution of planetary rotation [4, 12, 13], the question arises of the translational-rotational motion of 
a deformable body in a potential field. 

The motion of a deformable body with respect to its centre of mass consists of the rotation of the 
body as a whole and the elastic displacements s of its individual dements. The dissipation of mechanical 
energy during relative displacements leads to the damping of high-frequency normal oscillations and 
influences the motion of the body as a whole. 

As a rule, the decay time of the natural oscillations is considerably less than the characteristic time 
of the motion of the body as a whole. Hence steady motion is fundamental for a deformable body. 

We say that the system SH + So is an Nth order model if the subsystem SH describes the motion of 
the body as a whole taking no account of deformation, while the subsystem SD describes the deformation 
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of the body on the basis of a finite-dimensional approximation of the deformation field s, using forms 
of free oscillation corresponding to the N lowest frequencies of the body. 

As N --* ~ the right-hand sides of equations for steady motion for models of corresponding order 
form a rapidly converging functional series. This enables us to consider low-order models using a 
qualitative analysis of the influence of deformations on the motion of specific objects. 

This research was performed with the financial support of the Russian Foundation for Basic Research 
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scientists (INTAS) (93-339) and the International Science Foundation (MHN 000). 
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